
Unit   3                                                                                    Packages 

 
 

1 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

 Packages: 

 

• A Package can be defined as a grouping of related types(classes, interfaces) 

• A package represents a directory that contains related group of classes and interfaces. 

• Packages are used in Java in order to prevent naming conflicts. 

• There are two types of packages in Java. 

1. Pre-defined Packages(built-in) 

2. User defined packages 

Pre-defined Packages: 

Package 

Name 
Description 

java.lang  

Contains language support classes (for e.g classes which defines 

primitive data types, math operations, etc.). This package is 

automatically imported. 

java.io Contains classes for supporting input / output operations. 

java.util  

Contains utility classes which implement data structures like Linked 

List, Hash Table, Dictionary, etc and support for Date / Time operations. 

This package is also called as Collections.  

java.applet Contains classes for creating Applets. 

java.awt 
Contains classes for implementing the components of graphical user 

interface ( like buttons, menus, etc. ). 

java.net Contains classes for supporting networking operations. 

javax.swing  

This package helps to develop GUI Applications. The ‘x’ in javax 

represents that it is an extended package which means it is a package 

developed from another package by adding new features to it. In fact, 

javax.swing is an extended package of java.awt.  

java.sql  
This package helps to connect to databases like Oracle/Sybase/Microsoft 

Access to perform different operations.  

 

Defining a Package(User defined):  

To create a package is quite easy: simply include a package command as the first 

statement in a Java source file. Any classes declared within that file will belong to the specified 

package. The package statement defines a name space in which classes are stored. If you omit 

the package statement, the class names are put into the default package, which has no name.  



Unit   3                                                                                    Packages 

 
 

2 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

This is the general form of the package statement: 

package pkg; 

Here, pkg is the name of the package.  
 

For example, the following statement creates a package called MyPackage: 

package MyPackage; 
 

Java uses file system directories to store packages. For example, the .class files for any 

classes you declare to be part of MyPackage must be stored in a directory called MyPackage. 

Remember that case is significant, and the directory name must match the package name 

exactly. More than one file can include the same package statement.  

 Most real-world packages are spread across many files. You can create a hierarchy of 

packages. To do so, simply separate each package name from the one above it by use of a 

period. The general form of a multileveled package statement is shown here: 

package pkg1[.pkg2[.pkg3]]; 

A package hierarchy must be reflected in the file system of your Java development system. For 

example, a package declared as 

package java.awt.image; 

  Example: Package demonstration  

package pack; 

public class Addition 

{ 

   int x,y; 

   public Addition(int a, int b) 

   { 

    x=a; 

    y=b; 

   } 

   public void sum() 

   { 

    System.out.println("Sum :"+(x+y)); 

   } 

} 
  

 Step 1: Save the above file with Addition.java 
   

       package pack; 

public class Subtraction 

{ 



Unit   3                                                                                    Packages 

 
 

3 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

  int x,y; 

  public Subtraction(int a, int b) 

  { 

   x=a; 

   y=b; 

  } 

  public void diff() 

  { 

   System.out.println("Difference :"+(x-y)); 

  } 

} 

  

Step 2: Save the above file with Subtraction.java 

 Step 3: Compilation  

  To compile the java files use the following commands 

javac  -d   directory_path     name_of_the_java file  

Javac –d    .     name_of_the_java file  

Note: -d is a switching options creates a new directory with package name.  Directory 

path represents in which location you want to create package and . (dot) represents 

current working directory. 

 

Step 4: Access package from another package 

 There are three ways to use package in another package: 

1. With fully qualified name.  

class UseofPack 

{ 

 public static void main(String arg[]) 

 { 

  pack.Addition a=new  pack.Addition(10,15); 

  a.sum(); 

  pack.Subtraction s=new pack.Subtraction(20,15); 

  s.difference(); 

 } 

} 
 

2. import package.classname; 



Unit   3                                                                                    Packages 

 
 

4 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

 

import pack.Addition; 

import pack.Subtraction; 

class UseofPack 

{ 

 public static void main(String arg[]) 

 { 

   Addition a=new  Addition(10,15); 

  a.sum(); 

  Subtraction s=new Subtraction(20,15); 

  s.difference(); 

 } 

} 

3. import package.*; 

import pack.*; 

class UseofPack 

{ 

 public static void main(String arg[]) 

 { 

   Addition a=new  Addition(10,15); 

  a.sum(); 

  Subtraction s=new Subtraction(20,15); 

  s.difference(); 

 } 

} 

Note: Don’t place Addition.java, Subtraction.java files parallel to the pack directory. If 

you place JVM searches for the class files in the current working directory not in the 

pack directory. 

 

Access Protection 

• Access protection defines actually how much an element (class, method, variable) is 

exposed to other classes and packages. 

• There are four types of access specifiers available in java: 

 1. Visible to the class only (private).  

2. Visible to the package (default). No modifiers are needed. 

3. Visible to the package and all subclasses (protected) 

4. Visible to the world (public)  

 

 



Unit   3                                                                                    Packages 

 
 

5 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

 

 

 

 

 

Example:  
 

The following example shows all combinations of the access control modifiers. This 

example has two packages and five classes. The source for the first package defines three 

classes: Protection, Derived, and SamePackage.   

Name of the package: pkg1 

This file is Protection.java 

package pkg1; 

 

public class Protection 

{ 

 int n = 1; 

 private int n_priv = 2; 

 protected int n_prot = 3; 

 public int n_publ = 4; 

  

 public Protection() 

 { 

  System.out.println("base constructor"); 

  System.out.println("n = " + n); 

  System.out.println("n_priv = " + n_priv); 

  System.out.println("n_prot = " + n_prot); 

  System.out.println("n_publ = " + n_publ); 

 } 

} 

 

This is file Derived.java: 

package pkg1; 

   

class Derived extends Protection 

{ 

 Derived() 

 { 

  System.out.println("Same package - derived (from base) constructor"); 

  System.out.println("n = " + n); 



Unit   3                                                                                    Packages 

 
 

6 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

   

  /* class only 

  *  System.out.println("n_priv = "4 + n_priv); */ 

   

  System.out.println("n_prot = " + n_prot); 

  System.out.println("n_publ = " +n_publ); 

 } 

} 

 

This is file SamePackage.java 
 

package pkg1; 

   

class SamePackage 

{ 

 SamePackage() 

 { 

  Protection pro = new Protection(); 

  System.out.println("same package - other constructor"); 

  System.out.println("n = " + pro.n); 

   

  /* class only 

  *  System.out.println("n_priv = " + pro.n_priv); */ 

   

  System.out.println("n_prot = " + pro.n_prot); 

  System.out.println("n_publ = " + pro.n_publ); 

 } 

} 

 

Name of the package: pkg2 

 

This is file Protection2.java:  

 

package pkg2; 

   

class Protection2 extends pkg1.Protection 

{ 

 Protection2() 

 { 

 System.out.println("Other package-Derived (from Package 1-Base) 

Constructor"); 

   

  /* class or package only  

  *  System.out.println("n = " + n); */ 

   



Unit   3                                                                                    Packages 

 
 

7 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

  /* class only 

  *  System.out.println("n_priv = " + n_priv); */ 

   

  System.out.println("n_prot = " + n_prot); 

  System.out.println("n_publ = " + n_publ); 

 } 

} 

 

This is file OtherPackage.java 

package pkg2; 

  

class OtherPackage 

{ 

 OtherPackage() 

 { 

  pkg1.Protection pro = new pkg1.Protection(); 

   

  System.out.println("other package - Non sub class constructor"); 

   

  /* class or package only  

  *  System.out.println("n = " + pro.n); */ 

   

  /* class only  

  *  System.out.println("n_priv = " + pro.n_priv); */ 

   

  /* class, subclass or package only 

  *  System.out.println("n_prot = " + pro.n_prot); */ 

   

  System.out.println("n_publ = " + pro.n_publ); 

 } 

} 

 

 

If you want to try these t two packages, here are two test files you can use. The one for 

package pkg1 is shown here: 

 

/* demo package pkg1 */ 

 

package pkg1; 

 

/* instantiate the various classes in pkg1 */ 

public class Demo 

{ 

 public static void main(String args[]) 

 { 

  Derived obj2 = new Derived(); 



Unit   3                                                                                    Packages 

 
 

8 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

  SamePackage obj3 = new SamePackage(); 

 } 

} 

 

The test file for package pkg2 is 

 

package pkg2; 

 

/* instantiate the various classes in pkg2 */ 

public class Demo2 

{ 

 public static void main(String args[]) 

 { 

  Protection2 obj1 = new Protection2(); 

  OtherPackage obj2 = new OtherPackage(); 

 } 

} 

 

 

 

 

 

 

 

 

 



Unit   3                                                                                    Packages 

 
 

9 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

   

 

 

 

 

 

 

 

 

 



Unit   3                                                                                    Packages 

 
 

10 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

Exception 

An exception (or exceptional event) is a problem that arises during the execution of a 

program. When an Exception occurs the normal flow of the program is disrupted and the 

program/Application terminates abnormally, which is not recommended, therefore, these 

exceptions are to be handled. 

An exception can occur for many different reasons. Following are some scenarios 

where an exception occurs. 

 A user has entered an invalid data. 

 A file that needs to be opened cannot be found. 

 A network connection has been lost in the middle of communications or the JVM has 

run out of memory. 

Some of these exceptions are caused by user error, others by programmer error, and 

others by physical resources that have failed in some manner. 

 A Java exception is an object that describes an exceptional (that is, error) condition that 

has occurred in a piece of code. When an exceptional condition arises, an object representing 

that exception is created and thrown in the method that caused the error. That method may 

choose to handle the exception itself, or pass it on. Either way, at some point, the exception is 

caught and processed.  

 

Exceptions can be generated by the Java run-time system, or they can be manually 

generated by your code.  Java exception handling is managed via five keywords: try, catch, 

throw, throws, and finally. Briefly, here is how they work. Program statements that you want 

to monitor for exceptions are contained within a try block. If an exception occurs within the try 

block, it is thrown. Your code can catch this exception (using catch) and handle it in some 

rational manner. System-generated exceptions are automatically thrown by the Java runtime 

system. To manually throw an exception, use the keyword throw. Any exception that is thrown 

out of a method must be specified as such by a throws clause. Any code that 

absolutely must be executed after a try block completes is put in a finally block. 

This is the general form of an exception-handling block: 

try { 

// block of code to monitor for errors 

} 

catch (ExceptionType1 exOb) { 

// exception handler for ExceptionType1 

} 

catch (ExceptionType2 exOb) { 

// exception handler for ExceptionType2 

} 

// ... 

finally { 

// block of code to be executed after try block ends 



Unit   3                                                                                    Packages 

 
 

11 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

} 

Here, ExceptionType is the type of exception that has occurred. The remainder of 

this 

chapter describes how to apply this framework. 

 

Exception Types 

 

All exception types are subclasses of the built-in class Throwable. Thus, Throwable is 

at the top of the exception class hierarchy. Immediately below Throwable are two subclasses 

that partition exceptions into two distinct branches. One branch is headed by Exception. This 

class is used for exceptional conditions that user programs should catch. This is also the class 

that you will subclass to create your own custom exception types. There is an important 

subclass of Exception, called RuntimeException. Exceptions of this type are automatically 

defined for the programs that you write and include things such as division by zero and invalid 

array indexing. 

The other branch is topped by Error, which defines exceptions that are not expected to 

be caught under normal circumstances by your program. Exceptions of type Error are used by 

the Java run-time system to indicate errors having to do with the run-time environment, itself. 

Stack overflow is an example of such an error.   

 

 

 

 

 

 

 

Uncaught Exception: 

This small program includes an 

expression that intentionally causes a 

divide-by-zero error: 

class Exc0 { 

public static void main(String 

args[]) { 

int d = 0; 

int a = 42 / d; 

} 

} 

When the Java run-time system detects the attempt to divide by zero, it constructs a new  

exception object and then throws this exception. This causes the execution of Exc0 to stop, 

because once an exception has been thrown, it must be caught by an exception handler and dealt 

with immediately. In this example, we haven’t supplied any exception handlers of our 

own, so the exception is caught by the default handler provided by the Java run-time 

system. Any exception that is not caught by your program will ultimately be processed by the 

default handler. The default handler displays a string describing the exception, prints a stack 

trace from the point at which the exception occurred, and terminates the program.  



Unit   3                                                                                    Packages 

 
 

12 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

Here is the exception generated when this example is executed: 

java.lang.ArithmeticException: / by zero 

at Exc0.main(Exc0.java:4) 

Using try and catch: 

To guard against and handle a run-time error, simply enclose the code that you want to 

monitor inside a try block. Immediately following the try block, include a catch clause that 

specifies the exception type that you wish to catch.  

 

Example: 

class UsingTry_Catch  

{ 

 public static void main(String args[])  

 { 

  int d, a; 

  try { // monitor a block of code. 

   d = 0; 

   a = 42 / d; 

   System.out.println("This will not be printed."); 

  } 

  catch (ArithmeticException e) { // catch divide-by-zero error 

   System.out.println("Division by zero."); 

  } 

   System.out.println("After catch statement."); 

 } 

} 

Output: 

 

 

 

 

Multiple catch Clauses: 

 

• In some cases, more than one exception could be raised by a single piece of code. 

•  To handle this type of situation, you can specify two or more catch clauses, each 

catching a different type of exception.  

• When an exception is thrown, each catch statement is inspected in order, and the first 

one whose type matches that of the exception is executed. 

• If one catch statement is executed, the others are bypassed, and execution continues after 

the try / catch block.   

• When you use multiple catch statements, it is important to remember that exception 

subclasses must come before any of their super classes. This is because a catch 



Unit   3                                                                                    Packages 

 
 

13 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

statement that uses a super class will catch exceptions of that type plus any of its 

subclasses. Subclass would never be reached if it came after its super class. 

• A subclass must come before its super class in a series of catch statements. If not 

unreachable code will be created and a compile time error will result.  

 

Example: 

   

  // Demonstrate multiple catch statements. 

class MultipleCatches  

{ 

 public static void main(String args[])  

 { 

  try { 

   int a = args.length; 

   System.out.println("a = " + a); 

   int b = 42 / a; 

   int c[] = { 1 }; 

   c[42] = 99; 

  } 

     

  catch(ArithmeticException e)  

  { 

   System.out.println("Divide by 0: " + e); 

  }  

  catch(Exception e)  

  { 

   System.out.println("Array index out of bounds: " + 

e); 

  }  

  System.out.println("After try/catch blocks."); 

 } 

} 

 

 

Nested try Statements 

 

• The try block within a try block is known as nested try block in java. 

Syntax: 

try{ 

 try  {       

 statement 1;       

 statement 2;       

 try      

  {       



Unit   3                                                                                    Packages 

 
 

14 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

     statement 1;     

      statement 2;     

   }       

 catch(Exception e)      {      }   

    }  

     

} 

catch(Exception e){} 

 

• Each time a try statement is entered, the context of that exception is pushed on the stack. 

If an inner try statement does not have a catch handler for a particular exception, the 

stack is unwound and the next try statement’s catch handlers are inspected for a match. 

• This continues until one of the catch statements succeeds, or until all of the nested try 

statements are exhausted. If no catch statement matches, then the Java run-time system 

will handle the exception (default handler).  

 

Example: 

class NestTry  

{ 

 public static void main(String args[])  

 { 

  try  

  { 

   int a = args.length; 

 /* If no command-line args are present, the following statement 

will  

            generate a divide-by-zero exception. */ 

    

   int b = 42 / a; 

   System.out.println("a = " + a); 

 

   try { // nested try block 

    /* If one command-line arg is used, then a divide-by-zero   

                                        exception  will be generated by the following code. */ 

     

    if(a==1)  

     a = a/(a-a); // division by zero 

   

                    /* If two command-line args are used, then generate an out-of-                          

                                   bounds  exception. */ 

    if(a==2)  

    { 

     int c[] = { 1 }; 

     c[42] = 99; // generate an out-of-bounds exception 

    } 



Unit   3                                                                                    Packages 

 
 

15 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

   } 

   catch(ArrayIndexOutOfBoundsException e)  

   { 

    System.out.println("Array index out-of-bounds: " + e); 

   } 

  } 

  catch(ArithmeticException e)  

  { 

   System.out.println("Divide by 0: " + e); 

  } 

 } 

} 

 

 

 

 

finally block: 

 

• Java finally block is a block that is used to execute important code such as closing 

connections (databases, network, disks, commit in databases) etc. 

• Java finally block is always executed whether exception is handled or not. 

• Java finally block follows try or catch block. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1:  

class Finally_Case1   //exception not occured 

{   

 public static void main(String args[]) 

 {   

       try{   

         int data=25/25;   

         System.out.println(data);   



Unit   3                                                                                    Packages 

 
 

16 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

       }   

        finally 

       { 

   System.out.println("finally block is always 

executed"); 

      }   

      System.out.println("rest of the code...");   

      }   

}   

 

 

Example 2: 

class Finally_Case2   //exception occured and not handled. 

{   

 public static void main(String args[]) 

 {   

       try{   

         int data=25/0;   

         System.out.println(data);   

       }   

       catch(ArrayIndexOutOfBoundsException e) 

       { 

   System.out.println(e); 

  }   

       finally 

       { 

   System.out.println("finally block is always 

executed"); 

      }   

      System.out.println("rest of the code...");   

      }   

}   

 

Example 3: 

class Finally_Case3   //exception occured and handled. 

{   

 public static void main(String args[]) 

 {   

       try{   

         int data=25/0;   

         System.out.println(data);   

       }   

       catch(ArithmeticException e) 

       { 

   System.out.println(e); 

  }   



Unit   3                                                                                    Packages 

 
 

17 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

       finally 

       { 

   System.out.println("finally block is always 

executed"); 

      }   

      System.out.println("rest of the code...");   

      }   

}   

 

 

Use of throw 

 

• So far, you have only been catching exceptions that are thrown by the Java run-time 

system. However, it is possible for your program to throw an exception explicitly, using 

the throw statement.  

• The general form of throw is shown here: 

  throw ThrowableInstance; 

• Here, ThrowableInstance must be an object of type Throwable or a subclass of 

Throwable.  

 

• There are two ways to obtain a Throwable instance: 

  - creating one with the new operator  

     throw new exception_class("error message");  

  - using the parameter in catch clause  -     throw exception;  

• The flow of execution stops immediately after the throw statement; any subsequent 

statements are not executed. The nearest enclosing try block is inspected to see if it has 

a catch statement that matches the type of exception. If it does find a match, control is 

transferred to that statement. If not, then the next enclosing try statement is inspected, 

and so on. If no matching catch is found, then the default exception handler halts the 

program and prints the stack trace.  

 

 

 

Example: 

/* 

In this example, we have created the validate method that takes integer value as a 

parameter.  If the age is less than 18, we are throwing the ArithmeticException otherwise 

print a message welcome to vote.*/ 

 



Unit   3                                                                                    Packages 

 
 

18 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

public class UseofThrow 

{   

         static void validate(int age) 

  {    

  try{ 

   if(age<18) 

       throw new ArithmeticException("not valid\n");   

   else 

    System.out.println("Welcome to participate in voting"); 

  } 

  catch(ArithmeticException e) 

  { 

   System.out.println(e); 

   throw e; 

  } 

        }   

       public static void main(String args[]) 

       {   

  validate(13);   

    System.out.println("rest of the code...");   

      }   

}  

 

Use of throws: If you are not in a position to handle the exception use throws clause 

to intimate to the caller. 

Syntax: 

type method-name(parameter-list) throws exception-list 

 { 

  // body of method 

 }  

 

 

 

 

Exceptions and its types: 

There are two types of exceptions.  

1. Unchecked exceptions 

2. Checked exceptions 

Unchecked Exceptions: Found during running of a program 

ArithmeticException  Arithmetic error, such as divide-by-zero. 

ArrayIndexOutOfBoundsEx Array index is out-of-bounds. 



Unit   3                                                                                    Packages 

 
 

19 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

ception  

ArrayStoreException  Assignment to an array element of an 

incompatible type. 

ClassCastException  Invalid cast. 

IllegalArgumentException  Illegal argument used to invoke a method. 

IllegalThreadStateException  Requested operation not compatible with 

current thread state. 

NegativeArraySizeException  Array created with a negative size. 

NullPointerException  Invalid use of a null reference. 

SecurityException  Attempt to violate security. 

StringIndexOutOfBounds  Attempt to index outside the bounds of a 

string. 

 

 

Checked Exceptions: Found at compilation time 

 

ClassNotFoundEx

ception  

Class not found.  

IllegalAccessExce

ption  

Access to a class is denied.  

InterruptedExcep

tion  

One thread has been interrupted by another 

thread.  

NoSuchFieldExce

ption  

A requested field does not exist.  

NoSuchMethodEx

ception  

A requested method does not exist.  

 

 

 

 

 

Creating user-defined exception: 

 



Unit   3                                                                                    Packages 

 
 

20 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

• We can also create  our own exception by creating a sub class simply by extending java 

Exception class. 

• Define a constructor for Exception sub class (not compulsory) and  override the 

toString() method to display  customized message in catch clause. 

– Exception(); 

– Exception(parameter); 

• The first form creates an exception that has no description. The second form lets you 

specify a description of the exception.  

 

Syntax of toString(): 

 

• String toString( )  

 - Returns a String object containing a description of the exception.  

         - This method is called by println( ) when outputting a Throwable object. 

     - belongs to Object class  

Example: 

class MyException extends Exception 

{ 

    String s ; 

 MyException( String s)  

 { 

  this.s=s; 

 } 

 public String toString() 

 { 

      return ("User Defined " +s) ; 

 } 

} 

class UserDefinedException 

{ 

 public static void main(String args[]) 

 { 

    try{ 

throw new MyException("Exeption"); // throw is used to 

create //a new exception and throw it. 

    } 

    catch(MyException e) 

    { 

      System.out.println(e) ; 

    } 



Unit   3                                                                                    Packages 

 
 

21 

Dr. Suresh Yadlapati, M. Tech, Ph. D, Dept. of IT, PVPSIT. 
 

 } 

} 

 


